
1. Introduction
Accurately modeling snowpack is essential for subseasonal-to-seasonal (S2S) forecasting and hydroclimate 
projections in the mountainous western United States (WUS) where approximately 70% of total runoff originates 
as snowmelt (Kapnick et al., 2018; Li, Wrzesian, et al., 2017). Sophisticated land surface models (LSMs) are 
widely used to inform S2S forecasts and long-term snowpack and streamflow projections in the WUS (Gochis 
et al., 2015; Liu et al., 2017; Livneh & Badger, 2020). Accurate representation of snow albedo—the ratio of 
upwelling shortwave radiation (𝐴𝐴 𝐴𝐴𝐴𝐴 ↑ ) to downward solar radiation (𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ ) over snow-covered surfaces—in 
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range (maximum ensemble member minus minimum ensemble member) of ground snow albedo exceeding 0.45 
in visible and NIR bands. Parameter optimization improves agreement between simulated and in situ observed 
ground snow albedo in visible, NIR and broadband spectrums. Importantly, optimized parameters result in 
reduced biases relative to observed fresh-snow albedo and better agreement with observed albedo decay. Our 
analysis across different sites supports that the optimized BATS ground snow albedo parameters are appropriate 
to transfer in space and time, at least within the region studied (the central-southern Rocky Mountains). The 
primary error source remaining after parameter optimization is that observed fresh-snow albedo is highly 
variable, particularly in the NIR spectrum, whereas BATS fresh-snow albedo is constant, an issue which 
requires further investigation. This study shows significant correlations between observed fresh-snow albedo 
and surface meteorological conditions (e.g., downward shortwave radiation and temperature) which can support 
future model development that attempts to include a time-varying formulation for fresh-snow albedo.

Plain Language Summary Fresh snow reflects up to 90% of incoming sunlight (albedo 0.9), but 
as it ages, the reflectivity declines to as much as 50% (albedo 0.5). Snow albedo has a strong influence on 
snowpack evolution, melt rates, and land surface energy balance. The Biosphere-Atmosphere Transfer Schemes 
(BATS) snow albedo algorithm is commonly used to simulate snow albedo in climate and weather predictions. 
This study evaluates the BATS ground snow albedo algorithm and parameters within the widely used Noah-MP 
land surface model, through comparisons with observations of snow albedo in the Rocky Mountains. The BATS 
snow albedo scheme is extremely sensitive to input parameters. We identify an optimal set of input parameters 
to calculate snow albedo using the ground observations. Additionally, applying the optimized parameters across 
different sites in the central-southern Rocky Mountain region shows that optimized parameters are transferable 
in space and time within this region to sites with similar climate. The primary error source remaining after 
parameter optimization is the use of constant fresh-snow albedo in BATS; in reality, observed fresh-snow 
albedo is variable. Relationships between fresh-snow albedo and environmental conditions could inform model 
development of a time-varying formulation for fresh-snow albedo in the future.
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LSMs is important in snowpack simulations due to albedo's influence on the surface energy balance. Broadband 
snow albedo frequently varies from 0.5 to 0.9, and thus modulates the rate of ablation. Simulated errors in snow-
pack evolution from the widely used Noah with Multi-Parameterization (Noah-MP) LSM (Niu et al., 2011) have 
been determined to heavily rely on the accuracy of simulated snow albedo (Abolafia-Rosenzweig et al., 2021; 
Bryant et al., 2013; Chen et al., 2014; He et al., 2021; Jiang et al., 2019). Furthermore, snow albedo has a signif-
icant positive feedback in the climate system: warmer temperatures are expected to reduce snow cover extent, 
which in turn will decrease the overall land surface albedo favoring even higher land surface temperatures (Gao 
et al., 2017, 2018; Qu & Hall, 2014). Given the importance of accurate representation of snow albedo and known 
model deficiencies (Jin et  al.,  1999; Malik et  al.,  2014; Molotch & Bales, 2006), there is a pressing need to 
improve accuracy and understanding of snow albedo representation in LSMs.

Snow albedo schemes in LSMs, particularly those used in weather and hydrological forecast models, typi-
cally attempt to maintain established theoretical relationships that govern snow albedo evolution with high 
computational efficiency (Hansen et  al.,  1983; He & Flanner,  2020; Pedersen & Winther,  2005; Roeckner 
et al., 2004; Verseghy, 1991; Yang et al., 1997). Relatively simple schemes, such as the CLASS parameteriza-
tion (Verseghy, 1991), decreases snow albedo in time at an exponential rate modulated by a user-defined decay 
factor. This attempts to implicitly account for the suit of factors that affect snow albedo decay with a single 
time-constant parameter, and thus assumes that optical or environmental factors that affect snow albedo do not 
change in time. Thus, although simpler schemes may be effective at modeling average albedo decay rates, they 
are not capable of reflecting temporal variability in decay rates as a function of time-changing factors. Schemes 
increase in complexity as more factors that affect snow albedo evolution are explicitly accounted for by the model 
(e.g., the complex Snow, Ice, and Aerosol Radiative (SNICAR) model which is implemented in the Community 
Land Model (CLM)) (Flanner et al., 2007, 2021). Relationships between snow albedo and the environment that 
have been incorporated into more complex models relate to the inherent optical properties of snow, and envi-
ronmental factors, and are: (a) Snow grain size increases as snow ages, which reduces albedo, primarily in the 
near-infrared (NIR) spectrum (Wiscombe & Warren, 1980). (b) Deposition of light absorbing particles (e.g., dust 
and soot) on snow can significantly decrease snow albedo, primarily in the visible spectrum (He et al., 2018; 
Painter et al., 2010, 2013; Skiles et al., 2012). (c) Albedo increases as solar zenith increases, with near-infrared 
(NIR) albedo being more sensitive to sun angle than visible albedo (Wiscombe & Warren, 1980). (d) Cloud cover 
converts direct radiation into diffuse radiation, which has been observed to increase snow albedo (Gardner & 
Sharp, 2010; Wiscombe & Warren, 1980). (e) Increasing liquid water content decreases snow albedo; a direct 
minor reduction due to water absorption in the NIR and indirect reduction by accelerating snow grain growth and 
filling the pore space (Colbeck, 1979; Donahue et al., 2021, 2022; Grenfell & Maykut, 1977). (f) NIR and visible 
albedo are mostly insensitive to snow depth when the snowpack's snow water equivalent exceeds 20 cm (Wang 
et al., 2020; Wiscombe & Warren, 1980). (g) Albedo decay is partially driven by shortwave incident radiation 
and near surface air temperature, which relates to the rate of snow grain growth (Amaral et al., 2017; Calleja 
et al., 2021).

The Biosphere-Atmosphere Transfer Scheme (BATS) ground snow albedo formulation (Dickinson et al., 1986; 
Yang et al., 1997) is inferred from snowpack radiative transfer calculations of Wiscombe and Warren (1980). 
BATS is an intermediately complex algorithm which allows for high computational efficiency while maintain-
ing representations of the above interactions between direct and diffuse albedo over visible and NIR spectrums 
with snow age, surface temperature, solar illumination angle, and absorptive impurities. Given the balance 
between model complexity and computation efficiency, BATS is widely used in research-application and opera-
tional modeling systems such as the Noah-MP LSM, Weather Research and Forecasting model (WRF) (Powers 
et al., 2017), versions 2.0–3.0 of the WRF-Hydro/NOAA National Water Modeling system (Gochis et al., 2020), 
the Common Land Model (CoLM) (Li, Lu, et al., 2017), and the land component of the MPI Earth System Model 
(JSBACH3) (Reick et al., 2021).

Previous research has compared BATS simulated snow albedo with in situ and remotely sensed observations 
from point to global scales (Jin et al., 1999; Malik et al., 2014; Molotch & Bales, 2006; Wei et al., 2001; Xu 
& Shu, 2014; Yang et al., 1997; Zhou, 2003). BATS can accurately represent snow albedo dynamics (r > 0.9) 
(Malik et al., 2014), and has been found to outperform albedo models that are solely based on snow surface 
aging (Molotch & Bales, 2006). However, BATS has suffered from systematic overestimation of snow albedo 
relative to observations when using default and optimized (minimized RMSE) parameters (Jin et al., 1999; Malik 
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et al., 2014; Molotch & Bales, 2006). Molotch and Bales (2006) pointed out a likely overestimation of BATS 
simulated spring snow albedo because the Wiscombe and Warren (1980) parameterization, which BATS is based 
on, tends to overestimate albedo for large grains that tends to be more prevalent during ablation periods. BATS 
overestimated snow albedo has been shown to be exacerbated through snow albedo feedbacks: high albedo 
producing lower snowmelt, and lower snowmelt resulting in prolonged snowpack which increases albedo (Malik 
et al., 2014). BATS snow albedo is determined to be particularly error prone immediately following snowfall 
events (Jin et al., 1999; Molotch & Bales, 2006). This finding is consistent with an independent global evaluation 
of BATS, which found MODIS observes substantially lower pure snow NIR albedo than the default BATS setting 
in high latitude regions (Zhou, 2003).

Assimilation of albedo observations within the BATS scheme can improve simulated snowpack evolution (Xu & 
Shu, 2014), but has limited benefit for future forecasts. Furthermore, nonlinear interactions between snow and 
other processes in LSMs has made it difficult for these studies to address if simulated snow albedo is attributable 
to deficiencies in snow albedo formulations or other model processes (e.g., snow cover area dynamics) (Wang 
& Zeng, 2010). Unfortunately, albedo model evaluations are lacking because detailed spectral measurements of 
radiation are rare in remote snow-covered regions (Bair et al., 2019). Therefore, the need to better understand and 
improve BATS physical representation of snow albedo through novel field experiments and parameter optimiza-
tion remains an important area of research (Malik et al., 2014; Pirazzini, 2009).

This study addresses known uncertainties in BATS simulated ground snow albedo to improve accuracy of LSM 
simulated snowpack evolution by evaluating and optimizing the Noah-MP BATS ground snow age and albedo 
formulation using in situ two-band (visible and NIR) albedo observations at Rocky Mountain field stations. 
Comparisons between BATS simulated and observed snow albedo are designed to better understand BATS 
ground snow albedo error characteristics and reduce errors via parameter optimization. The three science ques-
tions this manuscript addresses are: (a) How sensitive is the Noah-MP BATS snow albedo scheme to its input 
parameters which are commonly assumed to be equivalent to default values defined in Yang et al. (1997)? (b) To 
which degree can parameter optimization improve agreement with observed snow albedo? (c) Are the optimized 
parameters spatially and temporally transferable?

2. Data and Methods
2.1. Study Sites and In Situ Observations

Observational data used in this study come from three different high-elevation study sites within the southern 
Rocky Mountains in the central and southwestern parts of the state of the Colorado (Figure 1). The sites are divided 
into one model evaluation and training site and two parameter transferability assessment sites. The primary model 
training and evaluation site is called the “Irwin” study site which is located approximately 11 km west-northwest 
of the town of Crested Butte, Colorado at an elevation of 3,168  m (10,423  ft.). Pairs of Huskeflux SR-11 
upward-looking and downward-looking broadband solar radiation (285–3,000  nm) and NIR (695–3,000  nm) 
pyranometers sensors were mounted at two different levels on an ∼10-m-tall tower. Upward-looking sensors 
are positioned at the top of the tower while downward-looking sensors are located approximately 4 m above 
the bare ground surface. In this separated manner, both pairs of sensors should have minimal “field-of-view” 
contamination from the tower structure. Any changes in upward versus downward exchange between the upward 
and downward-looking sensors due to sensor location is considered to be insignificant. The snow surface slope 
is not characterized at the site, no slope corrections for local solar zenith angle is applied to the down-looking 
pyranometers (Painter et al., 2012), which may introduce some uncertainty into calculated albedo. The Irwin site 
is characterized as a high-elevation subalpine site with sparse forest canopy within a cold continental climate 
regime. Care was taken in tower and sensor siting to minimize influences of surrounding trees on incoming and 
outgoing radiation measurements. In addition to basic meteorological measurements of air temperature, humid-
ity, and wind speed automated, ultrasonic snow depth measurements are made on the Irwin site. Grass understory 
exists at the site but the understory is fully buried by snow during the periods of investigation used in this study 
as analysis periods are limited to times when in situ measurements of snow depth exceed 0.2 m.

The first model parameter transferability assessment site is the “Senator Beck” Basin Study Area operated by 
the Center for Snow and Avalanche Studies, near Silverton, Colorado, which lies approximately 140 km south-
west of the Irwin study site (https://snowstudies.org/senator-beck-study-area-overview/). The Senator Beck site 

https://snowstudies.org/senator-beck-study-area-overview/
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is located in an alpine region at an elevation of 3,703 m (12,186 ft.). Alpine tundra vegetation at the site is very 
short and easily buried by seasonal snowpack but the same minimum criteria for snow depth of 0.2 m was applied 
at this site for our analysis. Numerous investigations on snowpack processes, including snow albedo, have been 
conducted at the Senator Beck site (e.g., Bair et  al.,  2019; Skiles et  al.,  2012; Skiles & Painter,  2017). The 
Senator Beck measurement suite, described in Landry et al. (2014), has a large number of snowpack thermody-
namic and radiative transfer sensors including automated snow depth measurements and pairs of upward-looking 
and downward-looking broadband and NIR-filtered Huskeflux SR-11 sensors allowing for direct comparison of 
observational data and all model evaluation metrics, including the two-band BATS albedo estimates, between the 
Irwin and Senator Beck sites.

The second model parameter transferability assessment site is referred to as the “East River” pumphouse 
eddy-covariance/energy balance (EC/EB) study site, located approximately 6.5  km northeast of the town of 
Crested Butte (14.3 km east-northeast of the Irwin site) at an elevation of 2,762 m (9,061 ft.). The East River 
tower was installed as part of the Department of Energy East River Watershed Science Focus Area program and 
was designed to characterize land-atmosphere exchanges of radiation, energy and water from a high-mountain 
riparian area (Ryken et al., 2021). As is typical of many EC/EB tower installations, a single four-way radiom-
eter (Kipp and Zonen CNR-4) was installed at the top of the EC/EB tower at a height of 6 m above the ground 
surface. The spectral channels of the East River radiometer are limited to broadband incoming and outgoing 
shortwave radiation (300–2,800 nm) as well as incoming and outgoing longwave radiation (4.5–42 µm). So, a 

Figure 1. Site pictures and location. (a) Picture of the Irwin station. (b) Picture of the Senator Beck station. (c) Picture of the East River station. (d) Vicinity map for 
the three study sites overlain on a topographic map.
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primary limitation of the East River site is that only broadband albedo, as opposed to partitioned visible and 
NIR components, can be assessed. However, like the East River site, many existing EC/EB flux towers possess 
four-way radiometer measurements similar or identical to the East River Kipp and Zonen CNR-4 sensor, so this 
site is used as an assessment site of opportunity to evaluate broadband shortwave albedo. Vegetation at the East 
River site is composed of riparian grasses and willow galleries of varying densities up to 2 m in height when not 
buried by snow. Both the grasses and willow galleries at this site get fully buried by seasonal snowpack and the 
willows typically get bent down by accumulating snow as the seasonal pack develops. Nevertheless, because of 
the greater grass and willow heights, evaluations of snow albedo are limited to periods when snow depth at the 
site, as measured by an ultrasonic snow depth sensor, is in excess of 0.5 m.

Lastly, all three sites reside in areas of very strong topographic variability and are surrounded, in various direc-
tions, by higher mountain peaks and ridges. As such, topographic shading of radiation measurements occurs at 
each site. Additionally, nearly all field measurements of incoming solar radiation suffer from sensor dome reflec-
tion and refraction at low sun angles which can greatly affect albedo measurements. To eliminate impacts from 
topographic shading and sensor dome contamination issues, measurements of snow albedo used in this study 
are limited to 1 hr before and after local solar noon, when the sun is nearly directly overhead. While this limited 
period may not fully account for albedo-relevant processes at low sun angles, it should provide a robust estimate 
of snow albedo with the least amount of uncertainty introduced by measurement issues and local terrain effects.

At the Irwin and Senator Beck stations, observed visible solar radiation is computed by subtracting the NIR 
incoming and outgoing solar radiation from the broadband incoming and outgoing solar radiation (Equations 1 
and 2, respectively) (Painter et al., 2012):

𝑆𝑆𝑆𝑆 ↓𝑉𝑉 = 𝑆𝑆𝑆𝑆 ↓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑆𝑆 ↓𝑁𝑁𝑁𝑁𝑁𝑁 (1)

𝑆𝑆𝑆𝑆 ↑𝑉𝑉 = 𝑆𝑆𝑆𝑆 ↑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑆𝑆 ↑𝑁𝑁𝑁𝑁𝑁𝑁 (2)

where 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and 𝐴𝐴 𝐴𝐴𝐴𝐴 ↑ represent incoming and outgoing solar radiation, respectively. Subscripts “V”, “NIR,” 
and “broadband” denote visible, NIR, and broadband, respectively. Visible albedo is computed as the ratio: 
of 𝐴𝐴 𝐴𝐴𝐴𝐴 ↑𝑉𝑉 ∕𝐴𝐴𝐴𝐴 ↓𝑉𝑉  .

2.2. Noah-MP Model Setup

Noah-MP (Niu et al., 2011) is implemented as a land component of the community Weather Research and Fore-
casting model (WRF), the community WRF-Hydro modeling system in its configuration as the operational 
NOAA National Water Model, and in the NOAA Unified Forecast System. Noah-MP simulations conducted 
in this analysis use model-physics options from the WRF/Noah-MP options used in the continental-scale 
convection-permitting regional climate simulations (He et al., 2019; Liu et al., 2017), except the BATS scheme 
is chosen to compute snow albedo instead of CLASS. Noah-MP snow-related parameters follow the values used 
in the recent release of WRF/Noah-MP version 4.3 (https://github.com/wrf-model/WRF/tree/release-v4.3), 
where the snow cover parameter has been updated to improve simulated surface albedo and temperature (He 
et al., 2021). Leaf and stem area indices (LAI and SAI) are classified by vegetation type based on the Moderate 
Resolution Imaging Spectroradiometer (MODIS) monthly climatology from 2000 to 2008 (Yang et al., 2011). 
The model vegetation cover is assumed to be short (0.1 m) grassland for each study location as observed at each 
site, so vegetation does not play a role in simulated albedo during analysis periods when snow depth exceeds 
0.2 m.

Land surface states for simulations at the Irwin and East River sites are initialized using a 13-year spin up (1 
October 2015 to 30 September 2016, 10 times in series; then 1 October 2015 to 1 January 2019). The simulation 
analysis period for Irwin spans 2019 through September 2020 to cover the period of continuous in situ observa-
tions at this site. The East River simulation analysis period spans January 2019 to April 2019 covering the period 
of continuous in situ observations at this site. Land surface states for simulations at the Senator Beck site are 
initialized using an 11-year spin up (1 October 2010 to 30 September 2019 then 1 October 2010 to 30 September 
2012), and the simulation analysis period at Senator Beck spans the 2013–2020 water years. Simulations are 
driven by hourly atmospheric forcing from the 1 km observation-constrained Analysis of Record for Calibration 
(AORC; https://hydrology.nws.noaa.gov/aorc-historic/Documents/AORC-Version1.1-SourcesMethodsandVeri-

https://github.com/wrf-model/WRF/tree/release-v4.3
https://hydrology.nws.noaa.gov/aorc-historic/Documents/AORC-Version1.1-SourcesMethodsandVerifications.pdf
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fications.pdf) data set used to drive NOAA's National Water Model (NWM). At the Irwin site, in situ observed 
downward shortwave radiation is used instead of AORC data at times with available observations to minimize 
simulation uncertainty attributable to uncertain downward shortwave radiation. At the Senator Beck site, in situ 
observed downward shortwave and longwave radiation, precipitation, air temperature, wind speed, pressure, and 
specific humidity are used instead of AORC data at times with available observations. At the East River site, in 
situ observed downward shortwave and longwave radiation and air temperature are used instead of AORC data at 
times with available observations.

2.3. BATS Ground Snow Albedo Scheme

The BATS ground snow albedo formulation, described in Yang et  al.  (1997), is the most sophisticated snow 
albedo physics option within the Noah-MP LSM. It computes ground snow albedo accounting for direct and 
diffuse radiation in visible and NIR bands. Broadband ground snow albedo (𝐴𝐴 𝐴𝐴𝑠𝑠 ) is computed as the average of 
visible (𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉 ; 𝐴𝐴 𝐴𝐴  < 0.7 μm) and NIR (𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ; 𝐴𝐴 𝐴𝐴 ≥ 0.7 μm) snow albedo:

𝛼𝛼𝑠𝑠 = 0.5 (𝛼𝛼𝑉𝑉 𝑉𝑠𝑠 + 𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑠𝑠) (3)

where

𝛼𝛼𝑉𝑉 𝑉𝑉𝑉 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑𝛼𝛼𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑 (4)

𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑑𝑑𝛼𝛼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑑𝑑 (5)

𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are the fractions of total transmitted solar radiation that is direct and diffuse, respectively. 
Direct visible (𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) and NIR (𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) snow albedos are solved as:

𝛼𝛼𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑 + 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝑍𝑍𝑉𝑉𝑉 (1 − 𝛼𝛼𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑 ) (6)

����,�−������ = ����,�−������� + NIR�����,� (1 − ����,�−������� ) (7)

𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑑𝑑 are diffuse visible and NIR albedo, respectively. VDIR and NIRDIR are the cosZ factor 
for direct visible and NIR snow albedo, respectively. 𝐴𝐴 𝐴𝐴𝑍𝑍𝑍𝑍𝑍 is a factor, ranging between 0 and 1, to parameterize the 
effect of solar zenith angle on snow albedo:

𝑓𝑓𝑍𝑍𝑍𝑍𝑍 = max

(

0𝑍
1

𝑏𝑏

[

1 + 𝑏𝑏

1 + 2𝑏𝑏𝑏𝑏𝑏𝑏𝑍𝑍𝑍𝑍
− 1

])

 (8)

where cosZ is the cosine of solar zenith angle and b is an adjustable parameter. Diffuse albedos are calculated as:

�� ,�−������� = �� ,��� (1 − ��������) (9)

����,�−������� = ����,��� (1 − NIR�������) (10)

where 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 are fresh-snow visible and NIR albedo with solar zenith angle less than 60°. Vage and 
NIRage are tunable parameters. 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is a snow age factor, ranging between 0 and 1, computed as

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 =
𝜏𝜏𝑠𝑠

1 + 𝜏𝜏𝑠𝑠
 (11)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 is defined as

𝜏𝜏
𝑡𝑡

𝑠𝑠 =

(

𝜏𝜏
𝑡𝑡−1

𝑠𝑠 + ∆𝜏𝜏𝑠𝑠

) [

1 − 𝑚𝑚𝑚𝑚𝑚𝑚(0,∆𝑆𝑆𝑆𝑆 𝑆𝑆)∕𝑆𝑆𝑆𝑆 𝑆𝑆𝑀𝑀𝑀𝑀

]

 (12)

t denotes the current time step, 𝐴𝐴 ∆𝑆𝑆𝑆𝑆 𝑆𝑆 is the change in snow water equivalent between t and t − 1, and SWEMX 
is the snow water equivalent required to fully cover old snow. 𝐴𝐴 ∆𝜏𝜏𝑠𝑠 is computed as

∆𝜏𝜏𝑠𝑠 = (𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3)
∆𝑡𝑡

𝜏𝜏0
 (13)

where 𝐴𝐴 𝐴𝐴0 is a tunable parameter with a unit of seconds. 𝐴𝐴 𝐴𝐴1 represents the effects of snow grain growth from vapor 
diffusion,

https://hydrology.nws.noaa.gov/aorc-historic/Documents/AORC-Version1.1-SourcesMethodsandVerifications.pdf
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𝑟𝑟1 = 𝑒𝑒𝑒𝑒𝑒𝑒

[

𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔

(

1

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹

−

1

𝑇𝑇𝑔𝑔

)]

 (14)

where Graingrowth is a tunable parameter, TFRZ = 273.16 K, and Tg is the ground temperature. 𝐴𝐴 𝐴𝐴2 parameterizes 
additional effects of snow grain growth near or at the freezing of meltwater:

𝑟𝑟2 = 𝑒𝑒𝑒𝑒𝑒𝑒

[

𝑚𝑚𝑚𝑚𝑚𝑚

(

0, 𝐸𝐸𝑒𝑒𝐸𝐸𝑟𝑟𝐸𝐸𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝐸𝐸𝑔 × 𝐺𝐺𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝐸𝐸𝑔

(

1

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹

−

1

𝑇𝑇𝑔𝑔

))]

 (15)

where Extragrowth is a tunable parameter. 𝐴𝐴 𝐴𝐴3 (i.e., dirt-soot) parameterizes the effects of snow impurities, and is a 
tunable parameter.

We created a box model comprised of snow age and snow albedo subroutines from the Noah-MP BATS snow 
albedo scheme, as summarized by Equations 3–15. This box model is used to directly constrain the aforementioned 
BATS parameters and reduce computation time in the parameter optimization process (described in Section 2.4) 
where tens of thousands of simulations were performed. The box model effectively simulates visible and NIR 
albedo nearly identical to the full Noah-MP simulations, with minimal differences due to SWE (as input to the 
box model in Equation 12) having slightly different temporary values within Noah-MP time steps (Figure S1 in 
Supporting Information S1). The box model requires dynamic inputs of Tg, SWE, cosZ and downward transmitted 
direct and diffuse solar radiation, which are taken from the reference Noah-MP simulation (using default parame-
ters listed in Table 1). We tested the adequacy of this step by finding that 5,000 box model simulations reproduce 
nearly identical results when inputting default parameters and an ensemble of dynamic time series (generated 
from Noah-MP simulations using unique BATS parameter sets) during periods when snow depth exceeds 0.2 m. 
Thus, the simplified box model that does not account for parameter tuning feedbacks on Tg and SWE is an 
adequate tool because parameter tuning does not have noticeable effects on reference Tg or SWE that translate to 
significant changes in simulated ground snow albedo (Figure S2 in Supporting Information S1). Note, parameter 
tuning does result in large changes to SWE and Tg, but these changes do not noticeably alter BATS simulated 
snow albedo during periods when snow depth is greater than 0.2 m. The box model (MATLAB R2020b) function 
is publicly available here: https://github.com/RAbolafiaRosenzweig/BATS-Snow-Albedo-for-MATLAB.

Parameter Description
Evaluated 

range

Default 
value (Yang 
et al., 1997)

Optimized 
for visible 

albedo

Optimized 
for NIR 
albedo

𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 Fresh-snow visible albedo with solar zenith angle less than 60° 0.80–0.95 0.95 0.91 –

𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Fresh-snow near-infrared albedo with solar zenith angle less than 60° 0.55–0.80 0.65 – 0.74

b Zenith angle snow albedo adjustment 1–4 2 – –

Vage Visible diffuse albedo snow age adjustment for albedo 0.1–0.99 0.2 0.80 –

NIRage Near-infrared diffuse albedo snow age adjustment for albedo 0.1–0.99 0.5 – 0.60

VDIR cosZ factor for direct visible snow albedo 0.2–0.8 0.4 – –

NIRDIR cosZ factor for direct NIR snow albedo 0.2–0.8 0.4 – 0.58

𝐴𝐴 𝐴𝐴0 (seconds) Empirical snow age parameter 10 5–10 7 10 6 3.05 × 10 6 5.29 × 10 5

Graingrowth Empirical grain growth parameter considering effect of vapor diffusion 2,500–10,000 5,000 9,287 7,715

Extragrowth Empirical grain growth parameter considering additional effects of growth near or at 
the freezing of meltwater

5–20 10 – –

dirt-soot Empirical parameter considering impurities (i.e., dirt and soot) 0.1–0.6 0.3 0.25 0.11

SWEMX (mm) New snow water equivalent required to fully cover old snow 0.5–2 1.0 1.98 1.5

Table 1 
Description of Tunable Noah-MP BATS and Snow age Parameters, Ranges at Which Parameters Were Evaluated at in This Study, Default Values, and Optimized 
Values That Maximize Agreement (NSE) Between Simulated and Observed Visible and NIR Snow Albedo, Respectively

https://github.com/RAbolafiaRosenzweig/BATS-Snow-Albedo-for-MATLAB
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2.4. BATS Ground Snow Albedo Sensitivity Testing and Parameter Optimization

The BATS ground snow albedo algorithm is typically run assuming default parameter values proposed by Yang 
et al. (1997). We test the sensitivity of the BATS scheme to each parameter by varying one parameter at a time 
through running the above box model over the Irwin site, holding all the other parameters at reference values. Ten 
simulations are run for each parameter (i.e., 10 different values covering evaluated ranges for each parameter), 
where evaluated parameter ranges (based on expert opinion from the authors of this manuscript) are defined in 
Table 1. Evaluation metrics for parameter sensitivity include: (a) the 10-member ensemble range of average daily 
albedo and (b) the 10-member ensemble range of variance. Insensitive parameters, which are held at default 
values during optimization, were only considered as those that are quantified within the four least sensitive 
parameters for both of these metrics. This is a strict categorization of insensitivity which likely allows relatively 
insensitive parameters to be tuned, however, the box model we use is computationally inexpensive and allows for 
a large number of simulations that can reasonably evaluate a large parameter space.

We next consider the sensitivity of the BATS scheme to variability across all tunable parameters (i.e., parame-
ters categorized as sensitive based on the above procedure) by running 15,000 BATS snow albedo simulations 
using the aforementioned box model at the Irwin study site, where these simulations vary by parameter settings 
determined through Latin hypercube sampling the parameter space (consisting of nine tunable parameters in this 
case). The corresponding 15,000-member ensemble range provides a metric for the range of potentially simulated 
ground snow albedo at the Irwin site based on unique combinations of parameter settings. This is important in 
understanding if previously reported BATS biases (e.g., Molotch & Bales, 2006; Zhou, 2003) fall within the 
range of BATS parameter-based uncertainty. BATS visible and NIR ground snow albedo parameters are opti-
mized at the Irwin study site by choosing the parameter set (of the 15,000 unique realizations) that maximizes the 
Nash-Sutcliffe Efficiency (NSE; Equation 19) relative to observed visible and NIR albedo.

2.5. Evaluation Metrics

Time series analyses are conducted to compare BATS simulated ground visible, NIR, and broadband snow albedo to 
corresponding observations. All evaluations consider daily time series, averaged during midday hours (±1 hr from 
solar noon) (see Section 2.1 for details). Importantly, we directly compare BATS simulated ground snow albedo 
outputs with observed ground snow albedo, which are not affected by snow cover area or vegetation due to the selec-
tion of analysis periods with snow fully covering short-vegetated ground at the measurement sites (see Section 2.1). 
This allows BATS ground snow albedo to be evaluated with reduced confounding effects from other LSM processes. 
We consider a range of evaluation metrics that quantify simulation accuracy uniquely, as described below.

The Pearson correlation coefficient (r) (Pearson & Henrici, 1896), ranging from −1 to 1, is widely used in hydro-
logical modeling studies, and thus serves as a well-known benchmark for performance:

� =

∑�
�=1

(

�� − �
)(

�� − �
)

√

∑�
�=1

(

�� − �
)2(

�� − �
)2

 (16)

The bias in mean albedo considers the average difference between simulated and observed albedo. This metric 
is used to understand the degree to which predicted albedo can accurately simulate the mean state of observed 
albedo.

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑃𝑃 − 𝑂𝑂 (17)

Similarly, the bias in albedo variability is computed as the difference between simulated and observed time series 
variance. This metric is used to understand the degree to which predicted albedo can accurately simulate the 
variance of observed albedo.

���� �� ������ ����������� = �2
� − �2

� (18)

Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) is a commonly used robust metric to compare simu-
lated and observed processes which normalizes model performance into an interpretable scale. NSE = 1 indicates 
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perfect correspondence between simulations and observations; NSE = 0 indicates that model simulations have 
the same explanatory power as the mean of the observations and NSE <0 indicates that the model is a worse 
predictor than the mean of the observations (Schaefli & Gupta, 2007).

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −

𝑛𝑛
∑

𝑡𝑡=1

(𝑂𝑂𝑡𝑡 − 𝑃𝑃𝑡𝑡)
2

𝑛𝑛
∑

𝑡𝑡=1

(

𝑂𝑂𝑡𝑡 − 𝑂𝑂

)

2

 (19)

We also report the Taylor score (S) (Taylor, 2001), which combines metrics of correlation and the root mean 
difference, where S has a lower bound of 0 and higher S corresponds with higher simulated accuracy.

𝑆𝑆 =
4(1 + 𝑟𝑟)

(

𝜎𝜎𝑃𝑃

𝜎𝜎𝑂𝑂

+
𝜎𝜎𝑂𝑂

𝜎𝜎𝑃𝑃

)2

(1 +𝑅𝑅0)
 (20)

where Ot and Pt represent observed and simulated albedo at timestep t, respectively. 𝐴𝐴 𝑂𝑂 and 𝐴𝐴 𝑃𝑃  represent the time 
series mean of observed and simulated albedo, respectively. n is the number of days in each time series. 𝐴𝐴 𝐴𝐴𝑂𝑂 and 

𝐴𝐴 𝐴𝐴𝑃𝑃 are the standard deviation of observed and simulated time series, respectively. 𝐴𝐴 𝐴𝐴0 is the maximum attainable 
correlation, assumed to be 1.0 in all cases in this analysis.

2.6. Albedo Decay Curves

We construct observed and simulated albedo decay curves at the Irwin and Senator Beck sites using daily 
averaged albedo time series (averaged over  ±1  hr solar noon) to evaluate simulated albedo decay dynamics 
(Sections 3.2 and 3.3, respectively). These decay curves display albedo categorized by the number of days after a 
previous snowfall event. Snowfall events are considered instances when observed snow depth increases by more 
than 20 mm.

3. Results
3.1. BATS Parameter Sensitivity and Optimization at the Irwin Site

The mean state of BATS simulated daily broadband snow albedo is most sensitive to 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , and 𝐴𝐴 𝐴𝐴0 , 
whereas the simulated daily broadband albedo variability is most sensitive to 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝐴𝐴 𝐴𝐴0 (Figure 2 and 

Figure 2. Biosphere-Atmosphere Transfer Scheme (BATS) simulated broadband ground snow albedo at the Irwin Site from 10 runs that vary each parameter across 
ranges defined in Table 1. (a) For each panel, only the titled parameter is varied while all others are held to default values defined in Table 1. The blackline is the 
median broadband albedo (vertical axis) of the 10 simulations and gray shading represents the range at each time step. Results are ordered by the range of mean daily 
snow albedo. (b) Ensemble range of mean daily albedo. (c) Ensemble range of variance for daily albedo.
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Figure S3 in Supporting Information S1). 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 define fresh-snow albedo in visible and NIR spec-
trums, and thus exert strong control on the mean state of visible and NIR albedo, respectively. 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 
scale snow aging effects on albedo, and thus these parameters exert strong control on the temporal variability of 
visible and NIR albedo, respectively. 𝐴𝐴 𝐴𝐴0 modulates fage and thus the albedo decay rate, where lower 𝐴𝐴 𝐴𝐴0 corresponds 
with higher fage and faster decay. Note, 𝐴𝐴 𝐴𝐴0 only exerts strong control on the mean albedo state when this parameter 
has a low setting (e.g., 1 × 10 5 s).

To optimize these parameters, a 15,000-member ensemble of ground snow albedo is generated through Latin 
hyper cube sampling unique parameter sets, considering all BATS snow albedo parameters to be tunable 
excluding b, Extragrowth and VDIR given the low sensitivity of simulated albedo mean and variability to these 
parameters (Figure 2). These 15,000 unique realizations of ground snow albedo have large variability. Specif-
ically, daily average ensemble ranges of simulated visible and NIR albedo are 0.49 and 0.47, respectively 
(Figure 3). This is quite large considering the observed range of daily visible and NIR albedo is less than 0.38 
at this site throughout the snow-covered periods when observations are available. Hence, systematic biases 
from BATS snow albedo (e.g., Molotch & Bales, 2006; Zhou, 2003) can likely be ameliorated through optimal 
parameter selection.

Here, we note key differences between reference and optimized parameter sets that can aid future BATS snow 
albedo modeling efforts. Table 1 presents optimized values for each Noah-MP snow age and BATS parameter. 
The optimal value for 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (0.91) is lower than the default value (0.95) based on the field measurement from 
Wiscombe and Warren (1980). Conversely, the optimal value for 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (0.74) is significantly higher than the 
default value (0.65). However, this provides only a slightly higher resultant fresh broadband albedo (0.825 from 
the optimized case and 0.8 from the reference case). These optimal settings for fresh-snow albedo closely corre-
spond with the median of observed fresh-snow albedo in visible (0.90) and NIR (0.75) wavelengths at the Irwin 
site (Figure 5a), thus the parameter optimization methodology (i.e., maximizing NSE) results in physically real-
istic parameter selection for fresh-snow albedo. We find that optimized Vage and NIRage are both much larger than 
the default settings defined in Yang et al. (1997), which is qualitatively consistent with the Malik et al. (2014) 
BATS parameter calibration. Using optimized and higher Vage and NIRage values better represent the observed 
fast albedo decay, relative to the too-slow reference simulated decay rate (e.g., Figure 4 and Table 2). Optimal 

𝐴𝐴 𝐴𝐴0 and SWEMX are significantly different for optimal visible and NIR albedo cases; however, Noah-MP currently 
considers this parameter equivalent in computations of visible and NIR albedo. Thus, Noah-MP simulations may 
benefit from computing the effects of snow albedo aging in visible and NIR wavelengths separately. Therefore, 
all optimized results presented herein compute visible and NIR albedo aging effects separately. Optimal dirt-soot 
settings for visible and NIR albedo simulations (0.25 and 0.11, respectively) are substantially lower than the 
default setting (0.3). This supports an argument provided by Molotch and Bales (2006) that the dirt-soot parame-
ter should be calibrated at multiple sites rather than accepting the default 0.3 from Yang et al. (1997). Our optimal 

Figure 3. Median (black line) and range (gray shading) of (a) visible and (b) near-infrared (NIR) ground snow albedo from 
15,000 Biosphere-Atmosphere Transfer Scheme (BATS) simulations using a suite of unique parameter sets selected from 
Latin hyper cube sampling. Blue stems show daily snowfall (right vertical axes).
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set of the parameters shows a NSE larger than the other sets of the parameters (Figure S4 in Supporting Informa-
tion S1), although the NSE variability in performance of the top 20 parameter sets is relatively small, whereas the 
parameter set variability in the top 20 sets for some tunable parameters (e.g., 𝐴𝐴 𝐴𝐴0 , NIRage, dirt-soot) is large (Figure 
S4 in Supporting Information S1). This indicates that the optimal parameter set selection is not robust because 
equifinality may play a role in selecting the optimal parameter sets with very close NSE.

3.2. BATS Ground Snow Albedo Evaluation at the Irwin Study Site

The reference BATS simulation systematically overestimates visible albedo (mean bias = 0.08) but underesti-
mates NIR albedo (mean bias = −0.02); however, these biases mostly cancel out when considering broadband 
albedo (mean bias = 0.01) (Table 2). The reference simulation provides an adequate correlation for visible, NIR, 
and broadband albedo (r 𝐴𝐴 ≥ 0.69) (Table 2 and Figure 4). Small biases in reference NIR albedo are partially attrib-
utable to compensatory errors: reference NIR fresh-snow albedo is lower than observations but too-slow albedo 
decay rates (controlled by low NIRage) result in a higher NIR albedo, with the mean NIR albedo close to obser-
vations (Figures 4–6). Reference visible albedo has large biases due to overestimated fresh-snow visible albedo 
and underestimated albedo decay rate (controlled by low Vage). Parameter optimization improves agreement 
between simulated and observed visible, NIR and broadband albedo across all evaluation metrics (Table 2 and 
Figure 4). Lowered biases in simulated visible and NIR albedo are largely attributable to optimized fresh-snow 
albedo settings (i.e., 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ), which exert a strong control on the mean albedo state, and optimized (i.e., 
increased) aging parameters (i.e., Vage and NIRage) which enable faster and more accurate decay rates (Figure 6). 
Overall, parameter optimization provides valuable improvements for simulated ground snow albedo at the Irwin 
site, in particular when considering the S and NSE metrics (Table 2).

BATS simulated ground snow albedo is much more accurate over warm months, relative to winter months when 
albedo variability is largely modulated by variability in fresh-snow albedo (Table 2; Figure S5 in Supporting 
Information S1). Over winter months, both optimized and reference BATS albedo fail to capture the temporal 
variability of observed visible, NIR, and broadband albedo (r ≤ 0.26). However, simulated winter albedo generally 
maintains low biases (−0.03 and −0.02 for reference and optimized broadband albedo, respectively) (Table 2). The 
low correlation between simulated and observed albedo during winter months indicates that factors controlling 
variability in observed albedo may not be well represented in the BATS scheme. For instance, observations show 

Figure 4. Simulated and observed ground snow albedo in (a, b) visible, (c, d) near-infrared (NIR), and (e, f) broadband 
wavelengths. For scatter plots in (b, d, and f), dots correspond with data over the winter period (November-February) and 
the * symbol corresponds with melt period data (March-June).
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a large range of fresh-snow albedo (Figure 5), which is currently constant 
in BATS. Two processes may be responsible for the observed fresh-snow 
variability: (a) fresh-snow is deposited with time-varying grain size, and (b) 
fresh-snow experiences a rapid decay between the time of deposition and the 
time a valid albedo observation is recorded at midday. Both explanations are 
consistent with the observed correlation between 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and fresh-snow NIR 
albedo (r = −0.47, p < 0.01; Figure 5); however, variability in fresh-snow 
visible albedo has an insignificant correlation with 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ . Given the moder-
ate correlation between fresh-snow NIR albedo and 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ , observed varia-
bility in fresh-snow albedo is likely controlled by other time-varying factors 
such as temperature, unmodeled impurities, cloud cover, humidity and/or 
measurement uncertainties (e.g., sensor obstruction). Discrepancies between 
BATS fresh-snow albedo and observed fresh-snow albedo motivates future 
research to explore the physics of new snow albedo variability.

Parameter optimization results in large improvements for BATS snow albedo 
over warm months. For instance, the optimized broadband snow albedo 
has an NSE of 0.73 over warm months whereas the reference broadband 
snow albedo has an NSE of −2.12 (Table 2; Figure S5 in Supporting Infor-
mation  S1). Improvements in broadband snow albedo are attributable to 
improved simulated visible and NIR snow albedo (Table 2). Improvements in 
simulated albedo from March-June strongly suggests that simulated ablation 
from the Noah-MP LSM can be substantially improved via optimized BATS 
parameterization.

Parameter optimization results in better agreement with observed visible, NIR, and broadband albedo decay 
(Figure 6). The average bias for the median and range (10th to 90th percentiles) of optimized visible albedo 
following snowfall events (up to 16 days) is −0.04 and −0.08, respectively; whereas reference biases are 0.07 

Figure 5. (a) Box and whisker plot of observed visible and near-infrared 
(NIR) ground snow albedo immediately following an observed increase in 
snow depth of at least 20 mm on top of an at least 0.2 m deep snowpack. 
Central marks indicate the median, and the bottom and top edges of boxes 
indicate the 25th and 75th percentiles, respectively. Whisker lengths are 
equivalent to the interquartile range. Outliers are plotted as black dots. (b) 
Scatter plot comparing observed fresh ground snow albedo with 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ . 
Correlations between visible and NIR albedo with 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ are shown in blue and 
red, respectively.

November to June

Optimized visible 
albedo

Reference visible 
albedo

Optimized NIR 
albedo

Reference NIR 
albedo

Optimized broadband 
albedo

Reference 
broadband albedo

R 0.79 0.67 0.83 0.78 0.86 0.80

Bias in mean albedo −0.00 0.07 0.01 −0.02 −0.01 0.01

Bias in albedo variability −0.00 −0.01 −0.01 −0.02 −0.00 −0.01

NSE 0.63 −7.90 0.68 −2.28 0.66 −2.03

Taylor score (S) 0.42 0.16 0.44 0.21 0.46 0.23

Winter (November to February)

 R −0.15 −0.14 0.23 0.26 0.12 0.14

 Bias in mean albedo 0.01 0.05 −0.01 −0.08 −0.02 −0.03

 Bias in albedo variability −0.01 −0.01 −0.00 −0.00 −0.00 −0.00

 NSE −0.17 −0.75 −0.16 −1.73 −2.86 −12.03

 Taylor score (S) 0.04 0.02 0.27 0.11 0.20 0.09

Melt period (March to June)

 R 0.90 0.75 0.81 0.76 0.88 0.81

 Bias −0.01 0.08 0.02 0.02 −0.00 0.04

 Bias in albedo variability −0.00 −0.01 −0.01 −0.02 −0.00 −0.01

 NSE 0.78 −0.92 0.61 0.35 0.73 −2.12

 Taylor score (S) 0.46 0.19 0.45 0.24 0.47 0.25

Table 2 
Summary Statistics of Reference and Optimized BATS Ground Snow Albedo Simulations at Irwin Station Relative to In Situ Observations at the Irwin Station
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and −0.16, respectively. The average bias for the median and range of optimized NIR albedo following snow-
fall events is 0.01 and −0.00, respectively; whereas reference biases are 0.07 and −0.14, respectively. Albedo 
variability following snowfall is partially controlled by meteorological conditions (e.g., 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and air tempera-
ture) (Figures 7, 8 and Figures S6, S7 in Supporting Information S1) (Amaral et al., 2017; Calleja et al., 2021). 
Observed and simulated albedo, categorized by days following snowfall, have significant (p ≤ 0.05) correlations 
with air temperature and 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ which supports that these meteorological conditions partially explain decay rate 

Figure 6. Ground snow albedo decay at the Irwin site n-days (horizontal axis) following snowfall. Solid dots represent the 
median albedo across all instances of albedo records following snowfall and whiskers represent the 10th and 90th percentiles. 
Ground snow albedo decay is shown in (a) visible, (b) near-infrared (NIR), and (c) broadband wavelengths. Presented data for 
days 7–8 after snowfall events only represent two decay events and afterward only one.

Figure 7. Comparison of in situ observed 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and ground snow albedo, grouped by days following snowfall at the Irwin site. Scatter plots compare variability in 
visible (blue) and near-infrared (NIR) (red) albedo with daily averaged 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ for each specific day. The relationship between 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and albedo n-days after snowfall 
(indicated by column titles), is shown for observed (top row), Biosphere-Atmosphere Transfer Scheme (BATS) optimized (middle row) and BATS reference ground 
snow albedo (bottom row). Underlined correlations are statistically significant (p ≤ 0.05).
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variability across multiple albedo decay events (5–47 decay events observed, varying by days following snow-
fall events). Correlations between observed and simulated albedo with meteorological conditions at the Irwin 
(Figures 7 and 8) and the Senator Beck sites (Figures S6 and S7 in Supporting Information S1) support that the 
BATS snow albedo scheme correctly represents directional controls of 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and air temperature on snow albedo 
decay rate. Observed NIR albedo tends to have higher correlations with these meteorological conditions than visi-
ble albedo at both Irwin and Senator Beck sites because NIR snow albedo is more sensitive to snow grain growth 
(He et al., 2018; Wiscombe & Warren, 1980) during aging driven by high downward radiation and temperature. 
Observed fresh-snow albedo is more sensitive to 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ than simulated albedo at both Irwin and Senator Beck 
sites (Figure  7 and Figure S6 in Supporting Information  S1). Thus, the BATS scheme may be improved by 
incorporating a dependence of fresh-snow albedo on 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and other potential meteorological variables, rather 
than the assumed constant representation. However, more detailed research outside the scope of this analysis is 
required to integrate fresh-snow's dependence on meteorological conditions considered herein and other factors 
(e.g., humidity and cloud fraction) (Wang et  al., 2020) that govern variability in fresh-snow albedo. Overall, 
lower biases in albedo variability from the optimized simulation, relative to the reference simulation (Table 2), 
supports that parameter selection is important to accurately simulate albedo decay rate but there is still room for 
BATS model improvement by including a temporally dynamic representation of fresh-snow albedo. Furthermore, 
remaining errors after parameter optimization are likely at least partially attributable to discrepancies between the 
1 km AORC atmospheric forcing and the site's true meteorological conditions.

fage (Equation  11) controls the average albedo decay rate and variability in decay rates in the BATS scheme 
(Figure 9 and Figure S8 in Supporting Information S1), where the sensitivity of simulated albedo to fage is modu-
lated by input parameters Vage and NIRage (Equations 9 and 10). For instance, in Figure 9a fage curves have high 
correlations with BATS simulated visible and NIR albedo decay curves (r = −1.00). fage also has high correlations 
with observed visible and NIR albedo decay curves (r = −0.95 and −0.96 for visible and NIR albedo, respec-
tively). Thus, the BATS fage formulation successfully simulates average observed decay dynamics. Simulated 
fresh-snow variability strongly relates with fage; however, variability in observed fresh-snow albedo has weak 
relationships with fage at the Irwin (Figure 9b) and Senator Beck (Figure S9 in Supporting Information S1) sites 
(|r| ≤ 0.35). This further supports that simulated controls on variability in snow albedo immediately following 
snowfall are inaccurate. During two to 5 days following snowfall, observed albedo decay rate variability tends 
to have a significant relationship with fage (Figure 9b). Thus, factors that modulate variability in albedo decay 

Figure 8. Comparison of Analysis of Record for Calibration (AORC) air temperature and in situ observed ground snow albedo, grouped by days following snowfall 
at the Irwin site. Scatter plots compare variability in visible (blue) and near-infrared (NIR) (red) albedo with daily averaged air temperature for each specific day. The 
relationship between air temperature and albedo n-days after snowfall (indicated by column titles), is shown for observed (top row), Biosphere-Atmosphere Transfer 
Scheme (BATS) optimized (middle row) and BATS reference ground snow albedo (bottom row). Underlined correlations are statistically significant (p ≤ 0.05).
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rates more than a day after snowfall events tend to be reasonably represented through BATS snow aging formu-
lation. Figure 9a shows differences between fage curves following snowfall events for BATS simulations using 
parameters optimized for visible and NIR albedo. Importantly, these differences support that the Noah-MP BATS 
snow albedo scheme may benefit from an update that allows snow albedo aging for NIR and visible albedo to 
be computed separately. This separate treatment is physically reasonable because aging-driven changes in snow 
grain properties (e.g., size, shape, packing structures) have different impacts on visible and NIR snow albedo (He 
& Flanner, 2020).

3.3. Parameter Transferability to Senator Beck Site

We use the optimized parameters from the Irwin site (Table 1) to generate an optimized simulation at the Senator 
Beck site during different time periods to test the spatial and temporal transferability of the optimized parame-
ters. The optimized Noah-MP simulation produces more accurate snow albedo than the reference simulation at 

Figure 9. (a) Optimized Biosphere-Atmosphere Transfer Scheme (BATS) simulated ground snow albedo and fage n-days (horizontal axis) following snowfall. Solid dots 
represent the median albedo across all instances of albedo records following snowfall and whiskers represent the 10th and 90th percentiles. The “*” symbol represents 
the median fage across all instances of albedo records following snowfall, where the black line and symbols correspond to fage using optimal near-infrared (NIR) albedo 
parameters and the gray line and symbols correspond to fage using optimal visible albedo parameters. (b) Comparison of daily fage from optimized BATS visible and NIR 
albedo simulations, grouped by days following snowfall with observed (top row) and BATS optimized ground snow albedo (bottom row). Underlined correlations are 
statistically significant (p ≤ 0.05).
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the Senator Beck site (Figure 10; Table 3). Specifically, visible and NIR albedo from the optimized simulation 
have substantially lower biases than the reference simulation and similar correlations. There are similar biases 
from reference and optimized broadband snow albedo due to the offset effects of negative visible albedo bias 
and positive NIR albedo bias in the reference simulation. The optimized snow albedo shows improvements when 
considering the S and NSE metrics as well as reduced biases in albedo variability. Similar correlations between 
optimized and reference simulations suggests there are factors other than BATS parameter uncertainty which 
drives errors in simulated daily snow albedo variability (e.g., model physics and uncertain atmospheric forcing). 
Summary statistics calculated from the period (water years 2013–2018) before available observations at the 

Figure 10. Comparing Noah with Multi-Parameterization (Noah-MP) simulations with in situ observations of ground snow albedo at the Senator Beck site. (a) Time 
series of visible albedo from observations (black) and Noah-MP reference (blue) and optimized (red) simulations. Periods with snow depth less than 0.2 m that are not 
considered in this analysis are shaded in gray. (b) same as (a) but for near-infrared (NIR) albedo. (c) Scatter plot comparing reference and optimized visible albedo to 
observations. (d) Same as (c) but for NIR albedo. (e) Same as (c) but for broadband albedo.

 
Optimized visible 

albedo
Reference visible 

albedo
Optimized NIR 

albedo
Reference NIR 

albedo
Optimized broadband 

albedo
Reference 

broadband albedo

R 0.45 0.46 0.74 0.72 0.69 0.68

Bias in mean albedo −0.01 0.05 −0.05 −0.10 −0.03 −0.02

Bias in albedo variability −0.00 −0.01 −0.00 −0.01 −0.00 −0.01

NSE −0.41 −6.42 0.07 −4.93 0.11 −1.69

Taylor score (S) 0.35 0.17 0.42 0.26 0.42 0.26

Table 3 
Summary Statistics of Reference and Optimized BATS Ground Snow Albedo Simulations Relative to In Situ Observations at the Senator Beck Site
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Irwin site qualitatively agree with the aforementioned results in this paragraph (Table S1 in Supporting Informa-
tion S1). Hence, parameters optimized at the Irwin site are successfully transferred in space and time to improve 
BATS simulated albedo performance at the Senator Beck site.

The median broadband albedo decay curve from the optimized simulation shows slightly worse agreement with 
the median observed broadband snow albedo decay curve, relative to the reference simulation (Figure 11); where 
the bias from the optimized curve is −0.03 and the bias from the reference curve is −0.01. However, the bias 
of  the 80% range (10th–90th percentiles) for the optimized broadband albedo curve is 2.7 times smaller than that 
of the reference simulation, indicating substantial improvements in simulating albedo decay rate variability. For 
visible snow albedo, the optimized simulation provides a faster and less accurate median decay rate in the begin-
ning of decay cycles (e.g., first 7 days), but results in a more accurate median visible albedo 8–9 days in decay 
cycles, relative to the reference simulation (Figure 11a). The bias of the 80% range (10th–90th percentiles) for the 
optimized visible albedo curve is 1.7 times smaller than that of the reference simulation, indicating substantial 
improvements in simulating visible albedo decay rate variability. For NIR snow albedo, the optimized simulation 
provides a higher and more accurate fresh-snow albedo parameterization and faster and more accurate decay rates, 
resulting in a more accurate representation of NIR snow albedo throughout decay cycles relative to the reference 
simulation (Figure 11b). The bias of the 80% range (10th-90th percentiles) for the optimized NIR albedo curve 
is 4.7 times smaller than that of the reference simulation, indicating substantial improvements in simulating NIR 
albedo decay rate variability. Thus, the optimized simulation has similar performance as the reference simulation 

when considering the ability to model the average decay rate, but the opti-
mized simulation has much better agreement with the observed decay rate 
variability. These results support that transferring optimized BATS param-
eters in space and time results in non-degraded to improved performance.

3.4. Parameter Transferability to East River Site

We also use the optimized parameters from the Irwin site (Table 1) to gener-
ate an optimized simulation at the East River site to further test the spatial 
transferability of the optimized parameters. There are relatively small differ-
ences in skill between optimized and reference simulated broadband snow 
albedo at this site averaged over winter and spring: marginal correlation and 
bias reductions and increases to NSE and S (Table 4 and Figure 12). This 

Figure 11. Ground snow albedo decay at the Senator Beck site. Albedo n-days (horizontal axis) following snowfall. Solid 
dots represent the median albedo across all instances of albedo records following snowfall and whiskers represent the 10th 
and 90th percentiles. (a) Albedo in visible, (b) near-infrared (NIR), and (c) broadband wavelengths.

 
Optimized broadband 

albedo
Reference 

broadband albedo

R 0.67 0.67

Bias in mean albedo −0.01 −0.01

Bias in albedo variability −0.00 −0.01

NSE −0.74 −5.49

Taylor score (S) 0.31 0.14

Table 4 
Summary Statistics of Reference and Optimized BATS Ground Snow Albedo 
Simulations Relative to In Situ Observations at the East River Site
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is likely because of the offset effects of the visible and NIR albedo bias in 
the reference simulation as seen at the Irwin and Senator Beck sites, which 
however cannot be verified due to the lack of spectral measurements at the 
East River site. Additionally, similar to the Senator Beck analysis, similar 
skill scores between optimized and reference simulations suggests there are 
factors other than BATS parameter uncertainty which contribute to snow 
albedo simulation errors (e.g., model physics and uncertain atmospheric 
forcing). Broadband snow albedo from the optimized simulation has better 
agreement with observations during late spring when albedo decay is particu-
larly fast (Figure 12). Specifically, from 10 April 2019 to 20 April 2019, the 
optimized simulation shows a 37% bias reduction in broadband albedo rela-
tive to the reference simulation. Thus, although the overall statistics highlight 
only marginal differences between reference and optimized albedo perfor-
mance, these results support that parameter optimization will likely increase 
the accuracy of modeled late season ablation which depends on accurate 
representation of snow albedo (e.g., Abolafia-Rosenzweig et  al.,  2021). 
Overall, we consider the spatial transferability of optimized parameters to the 
East River site appropriate and nondegrading.

4. Discussions
Previous research that has evaluated and discussed BATS snow albedo 
has consistently reported overestimates (Malik et  al.,  2014; Molotch & 
Bales, 2006; Niu et al., 2011; Zhou, 2003). The results presented here high-
light those systematic biases in ground snow albedo can be resolved through 
parameter optimization. Thus, reported BATS biases are largely attributable 
to parameter uncertainty rather than a misrepresentation of processes in the 
BATS formulation. A previous effort to calibrate BATS ground snow albedo 
(Malik et al., 2014) likely failed to resolve systematic biases because only two 
tunable parameters were considered in that analysis (Vage and NIRage). Impor-
tantly, Malik et al. (2014) did not tune 𝐴𝐴 𝐴𝐴𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 parameters, which 
we show exert strong controls on the mean state of BATS simulated ground 

snow albedo. Given the high sensitivity of BATS ground snow albedo to appropriate parameters, we conclude 
that the BATS scheme can reasonably well simulate snow albedo if appropriate parameter selection is considered.

The primary error source remaining after parameter optimization is that observed fresh-snow albedo is highly 
variable, whereas BATS simulated fresh-snow albedo is constant. This error source can dominate BATS snow 
albedo performance in winter months when snowfall is frequent. This error source may only modestly affect 
the accuracy of simulated snowpack where winter ablation is small relative to spring ablation, but it may drive 
substantial errors in the simulated surface energy budget. Our observational analysis indicates that fresh-snow 
albedo is partially sensitive to 𝐴𝐴 𝐴𝐴𝐴𝐴 ↓ and air temperature, and a recent study also found sensitivities of fresh-snow 
albedo to relative humidity and cloud cover (Wang et al., 2020). Thus, future snow albedo model improvement 
can greatly benefit from adding a time-varying formulation for fresh-snow albedo into the BATS scheme that 
reflects combined effects of these conditions. Both Irwin and Senator Beck study sites are known to get relatively 
heavy dust depositions in spring that impacts visible albedo. Thus, optimized parameters presented herein may 
be considered regionally relevant; however, these parameters may not be appropriate for locations where dust 
deposition is lighter. Future snow modeling with Noah-MP can benefit from future studies that evaluate these 
locally optimized parameters over broader areas (e.g., regional or global) through comparisons with remotely 
sensed albedo observations (e.g., from MODIS).

Figure 12. Comparing Noah with Multi-Parameterization (Noah-MP) 
simulations with in situ observed ground snow albedo at the East River site. 
(a) Time series of broadband snow albedo from observations (black) and 
Noah-MP reference (blue) and optimized (red) simulations. (b) Scatter plot 
comparing reference and optimized broadband albedo to observations.
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5. Conclusions
The Noah-MP BATS ground snow albedo scheme is highly sensitive to fresh-snow albedo and snow age parame-
ters that are commonly assumed to be the same as those proposed by Yang et al. (1997). Mean daily BATS simu-
lated visible and NIR snow albedo can vary by more than 0.45 based on unique parameter settings. Therefore, 
parameter calibration of BATS ground snow albedo is key to accurately simulating snow albedo. Indeed, param-
eter optimization in this study improves agreement between simulated and in situ observed ground snow albedo 
in visible, NIR and broadband spectrums relative to a reference simulation using default BATS parameters (e.g., 
improving simulated broadband snow albedo NSE from −2.03 to 0.66). Importantly, optimized BATS albedo 
parameters result in reduced biases relative to observed fresh-snow albedo and better agreement with observed 
albedo decay. Our analysis supports that the optimized BATS ground snow albedo parameters are appropriate to 
transfer in time and space to sites with a similar climate. Namely, BATS ground snow albedo simulations using 
parameters optimized at the Irwin site from 2019 to 2020 were spatially and temporally transferred to other 
Rocky Mountain stations (i.e., Senator Beck and East River) for simulations spanning water years 2013–2020. 
Optimized simulations at Senator Beck and East River sites provide better or non-degraded performance relative 
to a reference simulation using default parameters, and in most cases optimized simulations have higher accuracy. 
Differences between optimized snow age parameters from visible and NIR snow albedo simulations indicate 
that the Noah-MP BATS snow albedo scheme may benefit from an update that allows NIR and visible snow 
albedo aging to be computed separately. The primary error source remaining after parameter optimization is that 
observed fresh-snow albedo is highly variable, particularly in the NIR band, whereas BATS fresh-snow albedo is 
constant. Correlations between observed fresh-snow albedo and meteorological conditions (downward shortwave 
radiation and temperature) quantified in this study can support future model development that attempts to include 
a time-varying formulation for fresh-snow albedo that can be linked to meteorological conditions.
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